MECHANICS OF SATURATED AND PARTIALLY
SATURATED POROUS MEDIA AND APPLICATIONS
TO ENVIRONMENTAL PROBLEMS

Numerical Solution for Deforming Porous Media Problems


[1] K.J. Bathe, Finite element procedures in engineering analysis, Prentice-Hall, Englewood Cliffs, New Jersey 1982.

[2] ED-Elast2d – Theoretical appendix – Cimne, Barcelona, Spain 1995.

[3] D. Gawin, L. Simoni, and B.A. Schrefler, Numerical Model for hydro-mechanical behaviour in deformable porous media: A benchmark problem, in "Computer Methods and Advances in Geomechanics", Yan (ed.), Balkema, Rotterdam, 1997, pp. 1143-1148.

[4] A. Gens, P. Jouanna, and B.A. Schrefler (eds.), Modern Issues in Non-Saturated soils, "CISM Courses and Lectures", n. 357, Springer-Verlag, Berlin, 1995.

[5] H. Hongwu, L. Sanavia, and B.A. Schrefler, An internal length scale in strain localization of multiphase porous media, "Mech. of Cohes.-Frict. Mater.", 4, 1999, pp. 443-460.

[6] R.W. Lewis and B.A. Schrefler, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, John Wiley, Chichester, 1998.

[7] L.E. Malvern, Introduction to the mechanics of a continuous medium, Prentice-Hall, New York, 1969.

[8] B.A. Schrefler, R. Matteazzi, D. Gawin, X. Wang, Two parallel computing methods for coupled thermo-hydro-mechanical problems, "Computer-Aided Civil and Infrastructure Engineering", 15, 2000, pp. 176-188.

[9] B.A. Schrefler, L. Simoni, X. Li, and O.C. Zienkiewicz, Mechanics of partially saturated porous media, from Numerical Methods and Constitutive Modelling in Geomechanics, C.S. Desai and G. Gioda (eds.), in "CISM Courses and Lectures", n. 311, Springer-Verlag, Berlin, 1990, pp. 169-209.

[10] B.A. Schrefler, H.W. Zhang, M. Pastor, and O.C. Zienkiewicz, Strain localisation modelling in saturated sand samples based on a generalised plasticity constitutive model, "Computational Mechanics", 22, 1998, pp. 286-280.

[11] J.C. Simo and T.J.R. Hughes, Computational Inelasticity, Springer-Verlag, Berlin, 1998.

[12] L. Simoni and B.A. Schrefler, A staggered F.E. solution for water and gas flow in deforming porous media, "Communications on Applied Numerical Methods", 7, 1991, pp. 213-223.

[13] X. Wang and B.A. Schrefler, A multifrontal parallel algorithm for coupled thermo-hydro-mechanical analysis of deforming porous media, "International Journal for Numerical Methods Engineering", 43, 1998, pp. 1069-1083.

[14] X. Wang, P. Baggio, and B.A. Schrefler, A multi-level frontal algorithm for finite element analysis and its implementation on parallel computation, "Engineering Computations", 16/4, 1999, pp. 406-427.

[15] X. Wang, R. Matteazzi, B.A. Schrefler, and O.C. Zienkiewicz, An asynchronous parallel algorithm for consolidation problems, in "Modeling in Geodynamics", M. Zaman, J.R. Booker, G. Gioda (eds.), John Wiley & Sons, Chichester, 2000, pp. 51-64.

[16] K. Wisniewski, E. Turska, L. Simoni, and B.A. Schrefler, Error analysis of staggered predictor-corrector scheme for consolidation of porous media, invited chapter to "The Finite Element method in the 1990’s", E. Onate, J. Periaux, A. Samuelsson (eds.), Springer-Verlag, Berlin, 1991, pp. 192-201.

[17] O.C. Zienkiewicz and R.L. Taylor, The finite element method, vol. 1, McGraw-Hill, London, 1988.

[18] O.C. Zienkiewicz and R.L. Taylor, The finite element method, vol. 2, McGraw-Hill, London, 1989.

[19] O. C. Zienkiewicz, A. Chan, M. Pastor, B.A. Schrefler, and T. Shiomi, Computational Geomechanics with special Reference to Earthquake Engineering, John Wiley & Sons, Chichester, 1999.