The proposed optimisation procedure to design complex mechanical
systems takes several steps:
- Formulation stage
The designer has to provide validated mathematical models
(physical models) and find a suitable set of design variables and
performance indexes which will be taken into account during the
optimisation phase.
- Explorative stage
The physical model (or group of models) is used in this stage to
compute the relationships between design variables and performance
indexes.
This is done for a "Uniformly distributed sequence" of feasible
design variables vectors. The analysis is performed by using the
Spearman rank correlation coefficient. If a strong correlation
between performance indexes is found, the number of performance
indexes that have to be taken into account can be reduced.
This phase is important because if the designer is not satisfied
with the preliminary results, he can go back and reformulate the
problem changing the design variables set and the performance
indexes set.
- Search stage
When the problem is relatively simple, the optimisation can be
performed directly using the physical model.
Approximation models (fitting the response data given by the
physical model) should be used in optimisation when the
computational effort for optimising the physical model is
prohibitive. Several approximation methods can be considered
(Artificial Neural Networks, Kriging, Polynomial Approximation).
The Pareto-optimal set can be computed in a very short time by
resorting to the Approximation model.
- Analysis and Synthesis
A second correlation analysis is performed on the solutions
belonging to the Pareto-optimal set. This can be done using again
the Spearman rank correlation coefficient.
The selection of one preferred solution among the Pareto-optimal
ones constitutes the synthesis stage.
|
|